login
A088374
Decimal expansion of a postulated upper estimate for the complex Grothendieck constant.
3
1, 4, 0, 4, 9, 0, 9, 1, 3, 2, 7, 3, 5, 7, 9, 5, 5, 3, 5, 5, 2, 5, 4, 4, 8, 1, 5, 0, 6, 1, 4, 6, 5, 4, 3, 4, 2, 7, 8, 1, 3, 4, 7, 6, 8, 0, 1, 8, 4, 1, 0, 8, 9, 5, 0, 5, 6, 8, 1, 1, 1, 6, 4, 1, 0, 6, 4, 9, 2, 8, 5, 4, 2, 9, 1, 8, 8, 7, 5, 4, 1, 5, 1, 1, 5, 2, 3, 4, 6, 0, 5, 2, 7, 2, 4, 6, 6, 8, 3, 7, 2, 6
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Grothendieck's Constant
EXAMPLE
1.4049091327357955...
MATHEMATICA
psi[x_] := (Sqrt[1 - x^2]*(EllipticE[-x^2/(1 - x^2)] - EllipticK[-x^2/(1 - x^2)]))/x; x0 = x /. FindRoot[psi[x] == 1/8*Pi*(x + 1), {x, 1/2}, WorkingPrecision -> 110]; RealDigits[8/(Pi*(x0 + 1)), 10, 102] // First (* Jean-François Alcover, Feb 06 2013 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Sep 28 2003
STATUS
approved