login
G.f.: A(x) = 1/(1-x - x/(1-x - x^2/(1-x - x^3/(1-x - x^4/(1-x - x^5/(...)))))), a continued fraction.
3

%I #16 Sep 24 2017 04:53:37

%S 1,2,5,14,41,122,366,1103,3332,10078,30503,92360,279722,847283,

%T 2566640,7775383,23555412,71361969,216195801,654983362,1984334264,

%U 6011741892,18213205238,55178866432,167170395758,506461095121,1534379837420,4648573702811,14083369899731,42667133594949

%N G.f.: A(x) = 1/(1-x - x/(1-x - x^2/(1-x - x^3/(1-x - x^4/(1-x - x^5/(...)))))), a continued fraction.

%H Vaclav Kotesovec, <a href="/A088355/b088355.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ c * d^n, where d = 3.0296112619721892426435033662444766469370800620363379560921091791758304730314... and c = 0.46759853331494118178113003272909690207439354761370218749894486984354... - _Vaclav Kotesovec_, Sep 24 2017

%t nmax = 40; CoefficientList[Series[1/Fold[(1 - x - #2/#1) &, 1, Reverse[x^Range[nmax]]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 24 2017 *)

%o (PARI) N = 66; q = 'q + O('q^N);

%o G(k) = if(k>N, 1, 1/( 1 - q - q^(k+1)*G(k+1)) );

%o gf = G(0); Vec(gf) \\ _Joerg Arndt_, Jun 29 2013

%K nonn

%O 0,2

%A _Paul D. Hanna_, Sep 26 2003

%E Added more terms, _Joerg Arndt_, Jun 29 2013