login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087511 Primes consisting only of digits 1 and 3 occurring with equal frequency. 16
13, 31, 11313331, 11333131, 13111333, 13131133, 13131331, 13133311, 13311313, 31133131, 33113131, 1113131333, 1131131333, 1131311333, 1131331133, 1133111333, 1133113133, 1133133311, 1133311313, 1133313113, 1133313131 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

There are 19 digit pairs which can produce such primes. (1, 0), (7, 0), (1, 3), (1, 4), (1, 6), (1, 7), (1, 9), (2, 3), (2, 9), (3, 4), (3, 5), (3, 7), (3, 8), (4, 7), (4, 9), (5, 9), (6, 7), (7, 9), (8, 9). - corrected by Robert Israel, Jul 10 2018

The number of digits is even and not divisible by 3. - Robert Israel, Jul 09 2018

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

MAPLE

sort(select(isprime, [seq(seq((10^(2*d)-1)/9+2*add(10^i, i=s), s=combinat:-choose([$0..(2*d-1)], d)), d=[1, 2, 4, 5, 7, 8, 10])])); # Robert Israel, Jul 09 2018

MATHEMATICA

Union[FromDigits/@Select[Flatten[Table[Tuples[{1, 3}, k], {k, 10}], 1], PrimeQ[FromDigits[#]] && Count[#, 1]==Count[#, 3] &]] (* Jayanta Basu, May 19 2013 *)

PROG

(PARI) d1=1; d2=3; k=0; a=vector(100); for(n=1, 3000, B=binary(n); L=length(B); s=sum(j=1, length(B), B[j]); if(L%2==0 & s==L/2, C=vector(L, n, (d2-d1)*B[n]+d1); p=subst(Pol(C), x, 10); if(isprime(p), if(k<100, k++; a[k]=p)); D=vector(L, n, d2-(d2-d1)*B[n]); q=subst(Pol(D), x, 10); if(isprime(q ), if(k<100, k++; a[k]=q))); ); a=vector(k, n, a[n]); vecsort(a)

CROSSREFS

Cf. A087510, A087512, A087513.

Sequence in context: A247836 A159670 A238736 * A299449 A300087 A118513

Adjacent sequences:  A087508 A087509 A087510 * A087512 A087513 A087514

KEYWORD

base,nonn

AUTHOR

Paul D. Hanna and Amarnath Murthy, Sep 11 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 14:47 EST 2019. Contains 320163 sequences. (Running on oeis4.)