login
a(n) = 3(a(n-2) + 1), with a(0) = 1, a(1) = 3.
13

%I #30 Sep 08 2022 08:45:11

%S 1,3,6,12,21,39,66,120,201,363,606,1092,1821,3279,5466,9840,16401,

%T 29523,49206,88572,147621,265719,442866,797160,1328601,2391483,

%U 3985806,7174452,11957421,21523359,35872266,64570080,107616801,193710243

%N a(n) = 3(a(n-2) + 1), with a(0) = 1, a(1) = 3.

%H Vincenzo Librandi, <a href="/A087503/b087503.txt">Table of n, a(n) for n = 0..2000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -3).

%F a(n) = a(n-1) + A038754(n). (i.e., partial sums of A038754).

%F From _Hieronymus Fischer_, Sep 19 2007, formulas adjusted to offset, Dec 29 2012: (Start)

%F G.f.: g(x) = (1+2x)/((1-3x^2)(1-x)).

%F a(n) = (3/2)*(3^((n+1)/2)-1) if n is odd, else a(n) = (3/2)*(5*3^((n-2)/2)-1).

%F a(n) = (3/2)*(3^floor((n+1)/2) + 3^floor(n/2) - 3^floor((n-1)/2)-1).

%F a(n) = 3^floor((n+1)/2) + 3^floor((n+2)/2)/2 - 3/2.

%F a(n) = A132667(a(n+1)) - 1.

%F a(n) = A132667(a(n-1) + 1) for n > 0.

%F A132667(a(n)) = a(n-1) + 1 for n > 0.

%F Also numbers such that: a(0)=1, a(n) = a(n-1) + (p-1)*p^((n+1)/2 - 1) if n is odd, else a(n) = a(n-1) + p^(n/2), where p=3.

%F (End)

%F a(n) = A052993(n)+2*A052993(n-1). - _R. J. Mathar_, Sep 10 2021

%p A087503 := proc(n)

%p option remember;

%p if n <=1 then

%p op(n+1,[1,3]) ;

%p else

%p 3*procname(n-2)+3 ;

%p end if;

%p end proc:

%p seq(A087503(n),n=0..20) ; # _R. J. Mathar_, Sep 10 2021

%t RecurrenceTable[{a[0]==1,a[1]==3,a[n]==3(a[n-2]+1)},a,{n,40}] (* or *) LinearRecurrence[{1,3,-3},{1,3,6},40] (* _Harvey P. Dale_, Jan 01 2015 *)

%o (Magma) [(3/2)*(3^Floor((n+1)/2)+3^Floor(n/2)-3^Floor((n-1)/2)-1): n in [0..40]]; // _Vincenzo Librandi_, Aug 16 2011

%Y Sequences with similar recurrence rules: A027383 (p=2), A133628 (p=4), A133629 (p=5).

%Y Other related sequences for different p: A016116 (p=2), A038754 (p=3), A084221 (p=4), A133632 (p=5).

%Y See A133629 for general formulas with respect to the recurrence rule parameter p.

%Y Related sequences: A132666, A132667, A132668, A132669.

%K nonn,easy

%O 0,2

%A _Reinhard Zumkeller_, Sep 11 2003

%E Additional comments from _Hieronymus Fischer_, Sep 19 2007

%E Edited by _N. J. A. Sloane_, May 04 2010. I merged two essentially identical entries with different offsets, so some of the formulas may need to be adjusted.

%E Formulas and MAGMA prog adjusted to offset 0 by _Hieronymus Fischer_, Dec 29 2012