login
A087014
Decimal expansion of G(1/2) where G is the Barnes G-function.
11
6, 0, 3, 2, 4, 4, 2, 8, 1, 2, 0, 9, 4, 4, 6, 2, 0, 6, 1, 9, 1, 4, 2, 9, 2, 2, 4, 5, 3, 4, 7, 0, 2, 0, 7, 9, 8, 8, 3, 0, 0, 3, 4, 2, 0, 3, 8, 9, 4, 5, 9, 7, 6, 5, 3, 8, 7, 7, 6, 9, 2, 0, 4, 1, 1, 9, 4, 3, 2, 7, 8, 5, 6, 7, 9, 3, 3, 5, 2, 9, 0, 7, 4, 8, 2, 9, 8, 6, 8, 8, 3, 6, 9, 8, 7, 3, 7, 4, 1, 4, 5, 4
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 136.
LINKS
Junesang Choi, Certain classes of series involving the zeta function, J. Math. Anal. Applic. 231 (1999) 91-117.
Eric Weisstein's World of Mathematics, Barnes G-Function
EXAMPLE
0.60324...
MATHEMATICA
(2^(1/24)*E^(1/8))/(Glaisher^(3/2)*Pi^(1/4))
(* Or, since version 7.0, *) RealDigits[BarnesG[1/2], 10, 102] // First (* Jean-François Alcover, Jul 11 2014 *)
PROG
(PARI) 2^(1/24)*exp(3/2*zeta'(-1))/Pi^(1/4) \\ Charles R Greathouse IV, Dec 12 2013
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 30 2003
STATUS
approved