The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086708 Primes p such that p-1 and p+1 are both divisible by cubes. 9
 271, 487, 593, 751, 809, 919, 1249, 1567, 1783, 1889, 1999, 2647, 2663, 2753, 2969, 3079, 3511, 3617, 3727, 3833, 3943, 4049, 4159, 4481, 4591, 4751, 4801, 5023, 6857, 6967, 7937, 8263, 8369, 9127, 9343, 10289, 10313, 10529, 10639, 11071, 11177 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA {p in A000040: p+1 in A046099 and p-1 in A046099}. - R. J. Mathar, Dec 08 2015 A089199 INTERSECT A089200. - R. J. Mathar, Dec 08 2015 MAPLE isA086708 := proc(n)     if isprime(n) then         isA046099(n-1) and isA046099(n+1) ;     else         false;     end if; end proc: n := 1: for c from 1 to 50000 do     if isA086708(c) then         printf("%d %d\n", n, c) ;         n := n+1 ;     end if; end do: # R. J. Mathar, Dec 08 2015 Res:= NULL: count:= 0: p:= 1: while count < 100 do   p:= nextprime(p);   if max(seq(t[2], t=ifactors(p-1)[2]))>=3 and max(seq(t[2], t=ifactors(p+1)[2]))>=3 then     count:= count+1; Res:= Res, p;   fi od: Res; # Robert Israel, Jul 11 2018 MATHEMATICA f[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[p=Prime[n]; If[f[p-1]>=3&&f[p+1]>=3, AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *) PROG (PARI) \\ Input no. of iterations n, power p and number to subtract and add k. powerfreep4(n, p, k) = { c=0; pc=0; forprime(x=2, n, pc++; if(!ispowerfree(x-k, p) && !ispowerfree(x+k, p), c++; print1(x", "); ) ); print(); print(c", "pc", "c/pc+.0) } ispowerfree(m, p1) = { flag=1; y=component(factor(m), 2); for(i=1, length(y), if(y[i] >= p1, flag=0; break); ); return(flag) } \\ Cino Hilliard, Dec 08 2003 CROSSREFS Cf. A162870 (subsequence). Sequence in context: A142762 A141029 A090838 * A142637 A288881 A245969 Adjacent sequences:  A086705 A086706 A086707 * A086709 A086710 A086711 KEYWORD nonn AUTHOR Jason Earls and Amarnath Murthy, Jul 28 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 04:49 EDT 2021. Contains 343030 sequences. (Running on oeis4.)