login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086466
Decimal expansion of 2*sqrt(5)/5 arccsch(2).
14
4, 3, 0, 4, 0, 8, 9, 4, 0, 9, 6, 4, 0, 0, 4, 0, 3, 8, 8, 8, 9, 4, 3, 3, 2, 3, 2, 9, 5, 0, 6, 0, 5, 4, 2, 5, 4, 2, 4, 5, 7, 0, 6, 8, 2, 5, 4, 0, 2, 8, 9, 6, 5, 4, 7, 5, 7, 0, 0, 6, 1, 0, 3, 9, 9, 2, 5, 6, 1, 2, 1, 5, 4, 6, 1, 1, 3, 1, 9, 6, 1, 3, 6, 1, 4, 9, 0, 2, 6, 4, 6, 9, 7, 2, 1, 9, 9, 5, 5, 4, 0, 6
OFFSET
0,1
COMMENTS
Equals the value of the Dirichlet L-series of the non-principal character modulo 5 (A080891) at s=1. - Jianing Song, Nov 16 2019
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.2, p. 7.
LINKS
R. J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, Table 22 for L(m=5,r=3,s=1).
H.-J. Seiffert, Problem B-771, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 32, No. 4 (1994), p. 374; More Sums, Solution to Problem B-771 by Don Redmond, ibid., Vol. 33, No. 5 (1995), pp. 470-471.
Renzo Sprugnoli, Sums of reciprocals of the central binomial coefficients, INTEGERS 6 (2006) #A27
Eric Weisstein's World of Mathematics, Central Binomial Coefficient.
FORMULA
Equals Sum_{k>=1} (-1)^(k-1)/(k*binomial(2*k,k)).
Equals A010532 * A002390 / 10. - R. J. Mathar, Jul 26 2010
Also equals f'(0) = 2*log(phi)/sqrt(5), with f(x) = (phi^x-cos(Pi*x)*phi^-x)/sqrt(5), the real Fibonacci interpolating function. - Jean-François Alcover, Apr 04 2014
Equals Sum_{k>=1} A080891(k)/k = Sum_{k>=1} Kronecker(5,k)/k = 1 - 1/2 - 1/3 + 1/4 + 1/6 - 1/7 - 1/8 + 1/9 + ... - Jianing Song, Nov 16 2019
Equals Sum_{k>=1} F(k)/(k*2^(k+1)), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Aug 10 2020
Sum_{k>=1} (2*k+1)*Lucas(k)/(k*(k+1)*2^k) = 10*c + 2 = 6.3040894096... where c is this constant (Seiffert, 1994). - Amiram Eldar, Jan 15 2022
Equals Sum_{k>=1} F(k)/(k*3^k), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Jul 02 2023
Equals 1/Product_{p prime} (1 - Kronecker(5,p)/p), where Kronecker(5,p) = 0 if p = 5, 1 if p == 1 or 4 (mod 5) or -1 if p == 2 or 3 (mod 5). - Amiram Eldar, Dec 17 2023
Equals A344041/2. - Hugo Pfoertner, Oct 16 2024
EXAMPLE
0.43040894096400403888943323295060542542457...
MATHEMATICA
2*Log[GoldenRatio]/Sqrt[5] // RealDigits[#, 10, 102]& // First (* Jean-François Alcover, Apr 18 2014 *)
PROG
(PARI) 2*log((1+sqrt(5))/2)/sqrt(5) \\ Stefano Spezia, Oct 15 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 21 2003
STATUS
approved