OFFSET
0,1
COMMENTS
This is Sum_{p prime, p>=3} -(-4/p)/p where (-4/.) is the Legendre symbol and is equal to - L(1,(-4/.)) plus an absolutely convergent sum (and therefore converges).
REFERENCES
Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 94-98.
LINKS
Julien Benney, Mark Underwood, Andrew J. Walker and David Broadhurst, Is this a convergent series and if so what is its sum?, digest of 12 messages in primenumbers Yahoo group, Oct 26 - Oct 30, 2009. [Cached copy]
David Broadhurst, post in primenumbers group, Oct 29 2009. [Broken link]
Henri Cohen, High Precision Computation of Hardy-Littlewood Constants, (1991).
Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
David Dummit, Andrew Granville, and Hershy Kisilevsky, Big biases amongst products of two primes, Mathematika 62 (2016), pp. 502-507; arXiv preprint, arXiv:1411.4594 [math.NT], 2014.
Richard J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, variable S(m=4,r=2,s=1) Section 3.1.
Eric Weisstein's World of Mathematics, Prime Sums.
FORMULA
EXAMPLE
0.33498132529999...
MATHEMATICA
Do[Print[N[Log[2]/2 + Sum[Log[2^(4*n)*(2^(2*n + 1) + 1)*(2^(2*n + 3) - 4)*(Zeta[4*n + 2] / (Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4])^2)] * MoebiusMu[2*n + 1]/(4*n + 2), {n, 1, m}], 120]], {m, 20, 200, 20}] (* Vaclav Kotesovec, Jun 28 2020 *)
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[-S[4, 2, 1], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 22 2021 *)
PROG
(PARI) /* the given number of primes and terms in the sum yield over 105 correct digits */ P=vector(15, k, (2-prime(k)%4)/prime(k)); -sum(s=1, 60, moebius(s)/s*log( prod( k=2, #P, 1-P[k]^s, if(s%2, if(s==1, Pi/4, sumalt(k=0, (-1)^k/(2*k+1)^s)), zeta(s)*(1-1/2^s) ))), sum(k=2, #P, P[k], .)) \\ M. F. Hasler, Oct 29 2009
CROSSREFS
KEYWORD
AUTHOR
Eric W. Weisstein, Jul 13 2003
EXTENSIONS
Edited by N. J. A. Sloane, Jun 10 2008
Corrected a(9) and example, added a(10)-a(104) following Broadhurst and Cohen. - M. F. Hasler, Oct 29 2009
STATUS
approved