login
A085507
Stirling transform of the prime characteristic function.
3
0, 0, 1, 4, 13, 41, 136, 505, 2171, 10693, 58246, 340242, 2095435, 13492077, 90267633, 623383765, 4414350135, 31899350954, 235002008725, 1773013299342, 13855253098226, 114135759054965, 1010686200326760, 9744658443894282, 102153128291263124, 1147158516520205256
OFFSET
0,4
LINKS
S. K. Ghosal, J. K. Mandal, Stirling Transform Based Color Image Authentication, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.
Eric Weisstein's World of Mathematics, Stirling Transform
FORMULA
G.f.: Sum_{k>=1} x^prime(k)/Product_{j=1..prime(k)} (1 - j*x). - Ilya Gutkovskiy, Jun 19 2018
MAPLE
b:= proc(n, m) option remember;
`if`(n=0, `if`(isprime(m), 1, 0), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 06 2021
MATHEMATICA
a[n_] := Sum[ StirlingS2[n, k]*Boole[PrimeQ[k]], {k, 0, n}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 29 2012 *)
CROSSREFS
Sequence in context: A141364 A001453 A005002 * A121654 A186202 A036366
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jul 02 2003
STATUS
approved