login
a(n) = largest prime divisor of n, or 1 if n is 1 or a prime.
11

%I #29 Jun 19 2022 02:21:33

%S 1,1,1,2,1,3,1,2,3,5,1,3,1,7,5,2,1,3,1,5,7,11,1,3,5,13,3,7,1,5,1,2,11,

%T 17,7,3,1,19,13,5,1,7,1,11,5,23,1,3,7,5,17,13,1,3,11,7,19,29,1,5,1,31,

%U 7,2,13,11,1,17,23,7,1,3,1,37,5,19,11,13,1,5,3,41,1,7,17,43,29,11,1,5,13

%N a(n) = largest prime divisor of n, or 1 if n is 1 or a prime.

%H Reinhard Zumkeller, <a href="/A085392/b085392.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A006530(A032742(n)). - _R. J. Mathar_, Jun 26 2011

%p A085392 := proc(n) max( op(numtheory[divisors](n) minus {n})) ; A006530(%) ;

%p end proc:

%p seq(A085392(n),n=1..50) ; # _R. J. Mathar_, Jun 26 2011

%t PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; f[n_] := Block[{gpd = Divisors[n][[ -2]]}, If[gpd == 1, 1, PrimeFactors[gpd][[ -1]] ]]; Table[ If[n == 1, 1, f[n]], {n, 1, 95}]

%t Join[{1},Table[FactorInteger[Divisors[n][[-2]]][[-1,1]],{n,2,120}]] (* _Harvey P. Dale_, Jul 02 2019 *)

%t a[n_] := If[CompositeQ[n], FactorInteger[n][[-1, 1]], 1]; Array[a, 100] (* _Amiram Eldar_, Jun 19 2022 *)

%o (Haskell)

%o a085392 = a006530 . a032742 -- _Reinhard Zumkeller_, Oct 03 2012

%o (PARI) gpd(n) = if (n==1, 1, n/factor(n)[1,1]);

%o gpf(n) = if (n==1, 1, vecmax(factor(n)[,1]));

%o a(n) = gpf(gpd(n)); \\ _Michel Marcus_, Apr 08 2018

%Y Cf. A006530, A014673, A032742, A085393.

%K nonn

%O 1,4

%A _Robert G. Wilson v_ and _Reinhard Zumkeller_, Jun 26 2003

%E Definition corrected by _N. J. A. Sloane_, Jul 02 2019. Also deleted an incorrect comment.