login
Sextuple factorials, 6-factorials, n!!!!!!, n!6.
78

%I #20 Sep 08 2022 08:45:11

%S 1,1,2,3,4,5,6,7,16,27,40,55,72,91,224,405,640,935,1296,1729,4480,

%T 8505,14080,21505,31104,43225,116480,229635,394240,623645,933120,

%U 1339975,3727360,7577955,13404160,21827575,33592320,49579075,141639680

%N Sextuple factorials, 6-factorials, n!!!!!!, n!6.

%C The term "Sextuple factorial numbers" is also used for the sequences A008542, A008543, A011781, A047058, A047657, A049308, which have a different definition. The definition given here is the one commonly used.

%H G. C. Greubel, <a href="/A085158/b085158.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Multifactorial.html">Multifactorial</a>.

%F a(n)=1 for n < 1, otherwise a(n) = n*a(n-6).

%F Sum_{n>=0} 1/a(n) = A288093. - _Amiram Eldar_, Nov 10 2020

%e a(14) = 224 because 14*a(14-6) = 14*a(8) = 14*16 = 224.

%p a:= n-> `if`(n<1, 1, n*a(n-6)); seq(a(n), n=0..40); # _G. C. Greubel_, Aug 21 2019

%t Table[Times@@Range[n,1,-6],{n,0,40}] (* _Harvey P. Dale_, Aug 10 2019 *)

%o (PARI) a(n)=if(n<1, 1, n*a(n-6));

%o vector(40, n, n--; a(n) ) \\ _G. C. Greubel_, Aug 21 2019

%o (Magma) b:=func< n | n le 6 select n else n*Self(n-6) >;

%o [1] cat [b(n): n in [1..40]]; // _G. C. Greubel_, Aug 21 2019

%o (Sage)

%o def a(n):

%o if (n<1): return 1

%o else: return n*a(n-6)

%o [a(n) for n in (0..40)] # _G. C. Greubel_, Aug 21 2019

%o (GAP)

%o a:= function(n)

%o if n<1 then return 1;

%o else return n*a(n-6);

%o fi;

%o end;

%o List([0..40], n-> a(n) ); # _G. C. Greubel_, Aug 21 2019

%Y Cf. n!:A000142, n!!:A006882, n!!!:A007661, n!!!!:A007662, n!!!!!:A085157, 6-factorial primes: n!!!!!!+1:A085150, n!!!!!!-1:A051592.

%Y Cf. A288093.

%K nonn

%O 0,3

%A _Hugo Pfoertner_, Jun 21 2003