login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084774 Coefficients of 1/sqrt(1-14*x+9*x^2); also, a(n) is the central coefficient of (1+7x+10x^2)^n. 2
1, 7, 69, 763, 8881, 106407, 1298949, 16065483, 200630241, 2524253767, 31947470149, 406281388443, 5187375332881, 66454791792487, 853788052488069, 10996378059281643, 141934540736139201, 1835494145265388167 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

G.f.: 1/sqrt(1-2*b*x+(b^2-4*c)*x^2) yields central coefficients of (1+b*x+c*x^2)^n.

REFERENCES

P. Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

V. Kotesovec, Asymptotic of a sums of powers of binomial coefficients * x^k, 2012

FORMULA

a(n) = Sum_{k=0..n} binomial(n,k)^2 * 2^k * 5^(n-k). - Paul D. Hanna, Sep 28 2012

Recurrence: n*a(n) = 7*(2*n-1)*a(n-1) - 9*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012

a(n) ~ sqrt(200+70*sqrt(10))*(7+2*sqrt(10))^n/(20*sqrt(Pi*n)) = (sqrt(2)+sqrt(5))^(2*n+1)/(2*10^(1/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012

MATHEMATICA

Table[Sum[Binomial[n, k]^2*2^k*5^(n-k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)

Table[n! SeriesCoefficient[E^(7 x) BesselI[0, 2 Sqrt[10] x], {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, May 10 2013 *)

PROG

(PARI) for(n=0, 30, t=polcoeff((1+7*x+10*x^2)^n, n, x); print1(t", "))

(PARI) {a(n)=sum(k=0, n, binomial(n, k)^2*2^k*5^(n-k))} - Paul D. Hanna, Sep 28 2012

CROSSREFS

Cf. A006442.

Sequence in context: A219330 A122010 A180911 * A025757 A243668 A265033

Adjacent sequences:  A084771 A084772 A084773 * A084775 A084776 A084777

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 11 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 20:40 EST 2016. Contains 278745 sequences.