OFFSET
0,2
COMMENTS
Also the number of subsets of {1,...,n} whose product of elements is equal to the least common multiple of elements. - Michel Marcus, Mar 27 2016
REFERENCES
Alan Sutcliffe, Divisors and Common Factors in Sets of Integers, awaiting publication. [Apparently unpublished as of 2016]
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..220
N. J. Calkin and A. Granville, On the number of coprime-free sets, Number Theory: New York Seminar 1991-1995 (eds. D. Chudnovsky, et.al.), Springer-Verlag (1996).
Marcel K. Goh and Jonah Saks, Alternating-sum statistics for certain sets of integers, arXiv:2206.12535 [math.CO], 2022.
EXAMPLE
Exactly 4 of the 2^4=16 subsets of the integers from 1 through 4 contain a pair of integers that share a common factor; these are {2,4}, {1,2,4}, {2,3,4} and {1,2,3,4}. The other 12 subsets do not; hence a(4)=12.
MATHEMATICA
Prepend[Table[Length@ Select[Rest@ Subsets@ Range@ n, Times @@ # == LCM @@ # &], {n, 22}] + 1, 1] (* Michael De Vlieger, Mar 27 2016 *)
PROG
(PARI) a(n)=nb = 0; S = vector(n, k, k); for (i = 0, 2^n - 1, ss = vecextract(S, i); if (prod(k=1, #ss, ss[k]) == lcm(ss), nb++); ); nb; \\ Michel Marcus, Mar 27 2016
(PARI) a(n, k=1)=if(n<2, return(n+1)); if(gcd(k, n)==1, a(n-1, n*k)) + a(n-1, k) \\ Charles R Greathouse IV, Aug 24 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew Vandermast, Jun 26 2003
EXTENSIONS
More terms from Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 12 2003
STATUS
approved