%I #3 Dec 05 2013 19:56:16
%S 0,1,1,1,1,2,1,2,1,2,2,2,2,2,2,2,2,3,2,3,2,3,2,3,2,3,3,3,3,3,3,3,3,3,
%T 3,3,3,4,3,4,3,4,3,4,3,4,3,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,4,5,
%U 4,5,4,5,4,5,4,5,4,5,4,5,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,5,6,5
%N a(n) = number of partitions of n into pair of parts n=p+q, p>=q>=1, with p-q equal to a square >= 0.
%C Number of integers k, 1 <= k <= n/2 such that n - 2k is a square.
%F See Maple line.
%e a(11) = 2: the partitions are (1,10) and (5,6).
%p A084359 := n->if n mod 2 = 0 then floor(sqrt((n-2)/4))+1 else floor(sqrt((n-2)/4)-1/2)+1; fi; # applies for n >= 2
%Y See A083023 for another version.
%K nonn
%O 1,6
%A _Amarnath Murthy_, May 27 2003