login
A084267
Partial sums of a binomial quotient.
0
1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72, 89, 109, 131, 156, 184, 215, 250, 288, 330, 376, 426, 480, 538, 601, 668, 740, 817, 899, 987, 1080, 1179, 1284, 1395, 1512, 1635, 1765, 1901, 2044, 2194, 2351, 2516, 2688, 2868, 3056, 3252, 3456, 3668, 3889, 4118, 4356
OFFSET
0,2
COMMENTS
Partial sums of A011865 are a(n)=sum{k=0..n, floor(C(k+2,4)/C(k+2,2))}.
FORMULA
a(n)=sum{k=0..n, floor(C(k+4, 4)/C(k+2, 2))}
G.f.: (x^4-x^3+x^2-x+1)/[(1-x)^4(1+x^2)(1+x+x^2)(1-x^2+x^4)].
MATHEMATICA
Accumulate[Table[Floor[Binomial[n, 4]/Binomial[n, 2]], {n, 6, 70}]] (* Harvey P. Dale, Jul 19 2012 *)
CROSSREFS
Sequence in context: A178063 A095233 A062434 * A177116 A011911 A175822
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 01 2003
STATUS
approved