login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083881
a(n) = 6*a(n-1) - 6*a(n-2), with a(0)=1, a(1)=3.
12
1, 3, 12, 54, 252, 1188, 5616, 26568, 125712, 594864, 2814912, 13320288, 63032256, 298271808, 1411437312, 6678993024, 31605334272, 149558047488, 707716279296, 3348949390848, 15847398669312, 74990695670784, 354859782008832
OFFSET
0,2
COMMENTS
Binomial transform of A001075.
FORMULA
a(n) = ((3-sqrt(3))^n + (3+sqrt(3))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*3^(n-k).
G.f.: (1-3*x)/(1-6*x+6*x^2).
E.g.f.: exp(3*x) * cosh(x*sqrt(3)).
a(n) = right and left terms in M^n * [1 1 1] where M = the 3X3 matrix [1 1 1 / 1 4 1 / 1 1 1]. M^n * [1 1 1] = [a(n) A030192(n) a(n)]. E.g. a(3) = 54 since M^3 * [1 1 1] = [54 144 54] = [a(3) A030192(3) a(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = Sum_{k, 0<=k<=n}3^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
G.f.: A(x) = G(0) where G(k) = 1 + 3*x/((1-3*x) - x*(1-3*x)/(x + (1-3*x)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 29 2012.
MATHEMATICA
f[n_]:= Simplify[(3 + Sqrt@3)^n + (3 - Sqrt@3)^n]/2; Array[f, 30, 0] (* Robert G. Wilson v, Oct 31 2010 *)
LinearRecurrence[{6, -6}, {1, 3}, 30] (* G. C. Greubel, Aug 01 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-3*x)/(1-6*x+6*x^2)) \\ G. C. Greubel, Aug 01 2019
(Magma) I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1) -6*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 01 2019
(Sage) ((1-3*x)/(1-6*x+6*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
(GAP) a:=[1, 3];; for n in [3..30] do a[n]:=6*a[n-1]-6*a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
CROSSREFS
Cf. A083882.
Cf. A030192.
Sequence in context: A151205 A151206 A151207 * A151208 A055835 A366118
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 08 2003
STATUS
approved