login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083839
G.f.: ( x - 3*x^2 + 6*x^3 - 8*x^4 + 4*x^5 - x^7 ) / (1 - 4*x + 6*x^2 - 5*x^3 + 2*x^4 + x^5 - x^6 + x^7 ).
0
0, 1, 1, 4, 7, 11, 19, 36, 67, 121, 216, 386, 691, 1236, 2206, 3929, 6987, 12411, 22024, 39046, 69162, 122406, 216481, 382606, 675811, 1193061, 2105156, 3712864, 6545672, 11535476, 20322024, 35789966, 63012987, 110913356, 195178616, 343387111, 604014136
OFFSET
0,4
REFERENCES
O. Martin, A. M. Odlyzko and S. Wolfram, Algebraic properties of cellular automata, Comm. Math. Physics, 93 (1984), pp. 219-258, Reprinted in Theory and Applications of Cellular Automata, S. Wolfram, Ed., World Scientific, 1986, pp. 51-90 and in Cellular Automata and Complexity: Collected Papers of Stephen Wolfram, Addison-Wesley, 1994, pp. 71-113. See Eq. 5.7.
FORMULA
G.f.: x*( 1-3*x-8*x^3+4*x^4-x^6+6*x^2 ) / ( (x^2-x+1)*(x^2+x-1)*(x^3-x^2+2*x-1) ). - R. J. Mathar, Sep 27 2014
MATHEMATICA
CoefficientList[Series[(x-3x^2+6x^3-8x^4+4x^5-x^7)/(1-4x+6x^2-5x^3+2x^4+x^5-x^6+x^7), {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 5, -2, -1, 1, -1}, {0, 1, 1, 4, 7, 11, 19, 36}, 50] (* Harvey P. Dale, Jun 09 2019 *)
CROSSREFS
Sequence in context: A310768 A109328 A228079 * A091176 A002974 A130625
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 19 2003
STATUS
approved