login
A082935
Smallest palindrome beginning with n and a digit sum of n at some stage.
0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10801, 11711, 12621, 13531, 14441, 15351, 16261, 17171, 1881, 1949999999999999999999491, 208802, 2139312, 227722, 2329232, 246642, 2519152, 265562, 27972, 28882, 29792, 3088803, 3179713, 3278723, 3369633, 3468643
OFFSET
1,2
COMMENTS
In most cases (perhaps in all other) except for n = 19 the digit sum in the first round itself is n. In case of 19 the first round of digit sum is 199 and the second round digit sum is 19.
Checked the conjecture above to n=100. - Robert G. Wilson v
EXAMPLE
a(19)=1949999999999999999999491. The smallest such number is 194 followed by 19 nines followed by 491. The first digit sum would be 199 and the next sum is 19.
MATHEMATICA
(*This code works for all numbers up to 100 except 19*) NextPalindrome[n_] := Block[{l = Floor[Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]]]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]]]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1;
idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]]]]]]; f[n_] := Block[{k = 1, dn = IntegerDigits[n]}, sdn = 2*Plus @@ dn; If[sdn == 2n, n, If[sdn == n, FromDigits[ Join[dn, Reverse[dn]]], If[sdn > n, 0, k = 10^Floor[(n - sdn)/9] - 1;; While[Plus @@ IntegerDigits[k] + sdn != n, k = NextPalindrome[k]]; FromDigits[ Join[dn, IntegerDigits[k], Reverse[dn]]]]]]]; Table[ f[n], {n, 1, 35}]
CROSSREFS
Cf. A082217.
Sequence in context: A135385 A087051 A082217 * A077739 A078213 A248794
KEYWORD
base,nonn
AUTHOR
Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 16 2003
EXTENSIONS
Edited, corrected and extended by Robert G. Wilson v, Jun 27 2003
STATUS
approved