The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082886 floor((prime(n+1)-prime(n))/log(prime(n))). 5
 1, 1, 1, 2, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) is unbounded by a theorem of Westzynthius. - Charles R Greathouse IV, Sep 04 2015 LINKS Kevin Ford, Ben Green, Sergei Konyagin, James Maynard, and Terence Tao, Long gaps between primes (2014). FORMULA a(n)=floor((prime(n+1)-prime(n))/log(prime(n))). a(n)=Floor(A001223(n)/log(A000040(n))). Infinitely often a(n) >> log log n log log log log n/log log log n, see Ford-Green-Konyagin-Maynard-Tao. - Charles R Greathouse IV, Sep 04 2015 EXAMPLE a(217) = floor((1361-1327)/log(1327)) = floor(4.72834...) = 4. MATHEMATICA Table[Floor[(Prime[n+1]-Prime[n])/Log[Prime[n]]//N], {n, 1, 220}] PROG (PARI) a(n, p=prime(n))=(nextprime(p+1)-p)\log(p) \\ Charles R Greathouse IV, Sep 04 2015 CROSSREFS Cf. A082862, A082884, A082885, A082888-A082891. Sequence in context: A285005 A263074 A281772 * A287179 A236511 A235924 Adjacent sequences:  A082883 A082884 A082885 * A082887 A082888 A082889 KEYWORD nonn AUTHOR Labos Elemer, Apr 17 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 01:03 EDT 2021. Contains 343117 sequences. (Running on oeis4.)