login
A082770
a(n) = smallest palindromic prime that begins with A082768(n) and contains more than twice the number of digits in A082768(n), or 0 if no such number exists.
2
101, 313, 727, 919, 10301, 11311, 12421, 13331, 14341, 15451, 16061, 17471, 18181, 19391, 30103, 31013, 32323, 33533, 34543, 35053, 36263, 37273, 38083, 39293, 70207, 71317, 72227, 73037, 74047, 75557, 76367, 77377, 78487, 79397, 90709
OFFSET
1,1
COMMENTS
Conjecture: no entry is zero. In most cases the number of digits required is 2k+1 where k is the number of digits in A082768(n). What is the first entry that requires more (than 2k+1) digits?
Answer to question: A082768(37) = 92, a(37) = 9200029. - David Wasserman, Jul 28 2005
CROSSREFS
Sequence in context: A252942 A090287 A134971 * A161907 A195855 A142769
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Apr 18 2003
EXTENSIONS
More terms from David Wasserman, Jul 28 2005
STATUS
approved