login
A082747
a(n) is the least k such that k*Mrs(n)*Mrs(n+1)*Mrs(n+2) + 1 is prime, where Mrs(n) is the n-th Mersenne prime.
0
2, 4, 6, 4, 60, 280, 60, 210, 306, 154, 154, 538, 1272, 640, 4180, 6384, 12816, 2020, 10918, 9694, 45420, 47506, 11680, 1408
OFFSET
1,1
EXAMPLE
2*(2^2-1)*(2^3-1)*(2^5-1) + 1 = 1303 is prime, so a(1) = 2.
MATHEMATICA
f[n_] := Module[{k = 1}, While[! PrimeQ[k*n + 1], k++]; k]; f /@ Times @@@ Partition[2^MersennePrimeExponent[Range[15]] - 1, 3, 1] (* Amiram Eldar, Jul 18 2021 *)
CROSSREFS
Sequence in context: A257080 A099784 A365160 * A127275 A242796 A298527
KEYWORD
nonn,hard,more
AUTHOR
Pierre CAMI, Oct 22 2004
EXTENSIONS
a(11) inserted and a(17)-a(24) added by Amiram Eldar, Jul 18 2021
STATUS
approved