login
a(n) = n! * d(n), where n! = factorial numbers (A000142), d(n) = subfactorial numbers (A000166).
10

%I #64 May 09 2020 04:45:29

%S 1,0,2,12,216,5280,190800,9344160,598066560,48443028480,4844306476800,

%T 586161043776000,84407190782745600,14264815236056985600,

%U 2795903786354347468800,629078351928420506112000,161044058093696572354560000,46541732789077953723039744000

%N a(n) = n! * d(n), where n! = factorial numbers (A000142), d(n) = subfactorial numbers (A000166).

%C a(n) is also the number of pairs of n-permutations p and q such that p(x)<>q(x) for each x in { 1, 2, ..., n }.

%C Or number of n X n matrices with exactly one 1 and one 2 in each row and column, other entries 0 (cf. A001499). - _Vladimir Shevelev_, Mar 22 2010

%C a(n) is approximately equal to (n!)^2/e. - _J. M. Bergot_, Jun 09 2018

%H Vincenzo Librandi, <a href="/A082491/b082491.txt">Table of n, a(n) for n = 0..200</a>

%H Ira Gessel, <a href="http://www.mat.univie.ac.at/~slc/opapers/s17gessel.html">Enumerative applications of symmetric functions</a>, Séminaire Lotharingien de Combinatoire, B17a (1987), 17 pp.

%H Shawn L. Witte, <a href="https://www.math.ucdavis.edu/~tdenena/dissertations/201910_Witte_Dissertation.pdf">Link Nomenclature, Random Grid Diagrams, and Markov Chain Methods in Knot Theory</a>, Ph. D. Dissertation, University of California-Davis (2020).

%F a(n) = n! * d(n) where d(n) = A000166(n).

%F a(n) = Sum_{k=0..n} binomial(n, k)^2 * (-1)^k * (n - k)!^2 * k!.

%F a(n+2) = (n+2)*(n+1) * ( a(n+1) + (n+1)*a(n) ).

%F a(n) ~ 2*Pi*n^(2*n+1)*exp(-2*n-1). - _Ilya Gutkovskiy_, Dec 04 2016

%p with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*n!, n=0..15); # _Zerinvary Lajos_, Jun 11 2008

%t Table[Subfactorial[n]*n!, {n, 0, 15}] (* _Zerinvary Lajos_, Jul 10 2009 *)

%o (Maxima) A000166[0]:1$

%o A000166[n]:=n*A000166[n-1]+(-1)^n$

%o makelist(n!*A000166[n], n, 0, 12); /* _Emanuele Munarini_, Mar 01 2011 */

%o (PARI)

%o d(n)=if(n<1, n==0, n*d(n-1)+(-1)^n);

%o a(n)=d(n)*n!;

%o vector(33,n,a(n-1))

%o /* _Joerg Arndt_, May 28 2012 */

%o (PARI) {a(n) = if( n<2, n==0, n! * round(n! / exp(1)))}; /* _Michael Somos_, Jun 24 2018 */

%o (Python)

%o A082491_list, m, x = [], 1, 1

%o for n in range(10*2):

%o ....x, m = x*n**2 + m, -(n+1)*m

%o ....A082491_list.append(x) # _Chai Wah Wu_, Nov 03 2014

%o (Scala)

%o val A082491_pairs: LazyList[BigInt && BigInt] =

%o (BigInt(0), BigInt(1)) #::

%o (BigInt(1), BigInt(0)) #::

%o lift2 {

%o case ((n, z), (_, y)) =>

%o (n+2, (n+2)*(n+1)*((n+1)*z+y))

%o } (A082491_pairs, A082491_pairs.tail)

%o val A082491: LazyList[BigInt] =

%o lift1(_._2)(A082491_pairs)

%o /** _Luc Duponcheel_, Jan 25 2020 */

%Y Cf. A000142, A000166.

%K easy,nonn

%O 0,3

%A _Emanuele Munarini_, Apr 28 2003