login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081587
Third row of Pascal-(1,4,1) array A081579.
5
1, 11, 46, 106, 191, 301, 436, 596, 781, 991, 1226, 1486, 1771, 2081, 2416, 2776, 3161, 3571, 4006, 4466, 4951, 5461, 5996, 6556, 7141, 7751, 8386, 9046, 9731, 10441, 11176, 11936, 12721, 13531, 14366, 15226, 16111, 17021, 17956, 18916, 19901
OFFSET
0,2
FORMULA
a(n) = (2 - 5*n + 25*n^2)/2.
G.f.: (1+4*x)^2/(1-x)^3.
a(n) = a(n-1) + 25*n - 15 with a(0)=1. - Vincenzo Librandi, Aug 08 2010
E.g.f.: (1/2)*(2 + 20*x + 25*x^2)*exp(x). - G. C. Greubel, May 26 2021
EXAMPLE
a(1)=25*1+1-15=11; a(2)=25*2+11-15=46; a(3)=25*3+46-15=106.
MATHEMATICA
((10*Range[0, 40]-1)^2 +7)/8 (* G. C. Greubel, May 26 2021 *)
PROG
(PARI) a(n)=5*n*(5*n-1)/2+1 \\ Charles R Greathouse IV, Jun 16 2017
(Magma) [(2-5*n+25*n^2)/2: n in [0..50]]; // G. C. Greubel, May 26 2021
(Sage) [((10*n-1)^2 +7)/8 for n in (0..40)] # G. C. Greubel, May 26 2021
CROSSREFS
Sequence in context: A116193 A282095 A063158 * A377663 A223834 A359096
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 23 2003
STATUS
approved