login
A081554
a(n) = sqrt(2)*( (3+2*sqrt(2))^n - (3-2*sqrt(2))^n ).
3
0, 8, 48, 280, 1632, 9512, 55440, 323128, 1883328, 10976840, 63977712, 372889432, 2173358880, 12667263848, 73830224208, 430314081400, 2508054264192, 14618011503752, 85200014758320, 496582077046168, 2894292447518688
OFFSET
0,2
COMMENTS
Numbers m such that ceiling( sqrt(m*m/2) )^2 = 4 + m*m/2. - Ctibor O. Zizka, Nov 09 2009
Numbers m such that 2*m^2+16 is a square. - Bruno Berselli, Dec 17 2014
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Tanya Khovanova, Recursive Sequences
Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
FORMULA
a(n)^2 = 2*A003499(n)^2 - 8.
a(n) = 8*A001109(n).
G.f.: 8*x/(1-6*x+x^2). - Philippe Deléham, Nov 17 2008
a(0)=0, a(1)=8, a(n) = 6*a(n-1) - a(n-2) for n>1. - Philippe Deléham, Sep 19 2009
a(n) = 4*Pell(2*n) = 4*A000129(2*n). - G. C. Greubel, Aug 16 2018
MATHEMATICA
a = 3 + 2Sqrt[2]; b = 3 - 2Sqrt[2]; Table[Simplify[Sqrt[2](a^n - b^n)], {n, 0, 25}]
CoefficientList[Series[8x/(1-6x+x^2), {x, 0, 40}], x] (* Harvey P. Dale, Mar 11 2011 *)
Table[4 Fibonacci[2 n, 2], {n, 0, 50}] (* G. C. Greubel, Aug 16 2018 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(8*x/(1-6*x+x^2))) \\ G. C. Greubel, Aug 16 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(8*x/(1-6*x+x^2))); // G. C. Greubel, Aug 16 2018
CROSSREFS
Sequence in context: A371620 A295047 A295375 * A231109 A079743 A079765
KEYWORD
nonn,easy
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Mar 21 2003
STATUS
approved