login
A080865
Order of symmetry groups of n points on 3-dimensional sphere with minimal distance between them maximized, also known as hostile neighbor or Tammes problem.
7
24, 12, 48, 6, 16, 12, 4, 10, 120, 8, 8
OFFSET
4,1
COMMENTS
If more than one best packing exists (this occurs for n = 15, 62, 76, 117, ...; see Buddenhagen, Kottwitz link) for a given n, the one with the largest symmetry group is chosen. A conjectured (except n=24) continuation of the sequence starting with n=15 would be: 3 16 4 2 2 12 1 1 1 24 3 2 4 1 1 6 5 6 3 2 1 4 2 24 1 3 1 10 1 2 1 2 1 24 2 12.
REFERENCES
L. Fejes Toth, Lagerungen in der Ebene auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972.
LINKS
D. A. Kottwitz, The Densest Packing of Equal Circles on a Sphere, Acta Cryst. (1991). A47, 158-165
O. R. Musin and A. S. Tarasov, The strong thirteen spheres problem, Discrete Comput. Geom., 48 (2012), 128-141, arXiv:1002.1439 [math.MG], 2010-2012.
O. R. Musin and A. S. Tarasov, The Tammes problem for N=14, Experimental Mathematics, 24 (2015), 460-468, arXiv:1410.2536 [math.MG].
Hugo Pfoertner, Arrangement of points on a sphere. Visualization of the best known solutions of the Tammes problem.
K. Schuette and B. L. van der Waerden, Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz?, Math. Annalen, 123 (1951), 96-124.
K. Schuette and B. L. van der Waerden, Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz?, Math. Annalen, 123 (1951), 96-124.
N. J. A. Sloane, Library of 3-d packings
CROSSREFS
A080866 gives the number of shortest edges which make up the rigid framework of the arrangement.
Cf. A342559 (point numbers where records of packing density occur).
Sequence in context: A228437 A079341 A307267 * A040555 A081314 A119872
KEYWORD
nonn,hard,more
AUTHOR
Hugo Pfoertner, Feb 21 2003
STATUS
approved