login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080728
a(0) = 3; for n>0, a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a member of the sequence if and only if a(n) == 2 mod 3".
0
3, 4, 6, 8, 11, 12, 14, 15, 17, 18, 19, 20, 23, 24, 26, 29, 30, 32, 35, 38, 41, 42, 43, 44, 47, 48, 50, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 74, 77, 78, 79, 80, 83, 84, 86, 89, 92, 95, 96, 97, 98, 101, 102, 104, 107, 110, 113, 116, 119, 122, 125, 128
OFFSET
0,1
LINKS
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308)
FORMULA
a(a(n)) = 3*n+8, n >= 0.
PROG
(PARI) {a=3; m=[3]; for(n=1, 68, print1(a, ", "); a=a+1; if(a%3==2&&a==n, qwqw=qwqw, if(m==[], while((a%3!=2&&a==n)||a%3==2, a++), if(m[1]==n, while(a%3!=2, a++); m=if(length(m)==1, [], vecextract(m, "2..")), if(a%3==2, a++))); m=concat(m, a)))}
CROSSREFS
Cf. A079000, A080720, ...
Sequence in context: A176986 A325455 A337455 * A047414 A109402 A020901
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 08 2003
EXTENSIONS
More terms and PARI code from Klaus Brockhaus, Mar 09 2003
STATUS
approved