login
A080728
a(0) = 3; for n>0, a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a member of the sequence if and only if a(n) == 2 mod 3".
0
3, 4, 6, 8, 11, 12, 14, 15, 17, 18, 19, 20, 23, 24, 26, 29, 30, 32, 35, 38, 41, 42, 43, 44, 47, 48, 50, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 74, 77, 78, 79, 80, 83, 84, 86, 89, 92, 95, 96, 97, 98, 101, 102, 104, 107, 110, 113, 116, 119, 122, 125, 128
OFFSET
0,1
LINKS
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308)
FORMULA
a(a(n)) = 3*n+8, n >= 0.
PROG
(PARI) {a=3; m=[3]; for(n=1, 68, print1(a, ", "); a=a+1; if(a%3==2&&a==n, qwqw=qwqw, if(m==[], while((a%3!=2&&a==n)||a%3==2, a++), if(m[1]==n, while(a%3!=2, a++); m=if(length(m)==1, [], vecextract(m, "2..")), if(a%3==2, a++))); m=concat(m, a)))}
CROSSREFS
Cf. A079000, A080720, ...
Sequence in context: A176986 A325455 A337455 * A047414 A109402 A020901
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 08 2003
EXTENSIONS
More terms and PARI code from Klaus Brockhaus, Mar 09 2003
STATUS
approved