

A080693


Numbers of the form p^2*q + r*s where p,q,r,s are (not necessarily distinct) primes.


0



12, 14, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A conjecture of Goldbach type says every number >= 26 is of this form.


LINKS

Table of n, a(n) for n=1..69.


EXAMPLE

12=2^2*2 + 2*2


MAPLE

H := proc(n::posint) local p, q, r, s; p := 2; while p<=floor(sqrt((n4)/2)) do q := 2; while q<=floor((n4)/p^2) do s := 2; while s<=floor((np^2*q)/2) do r := (np^2*q)/s; if type(r, posint) then if isprime(r) then return(true, p, q, s, r); end if; end if; s := nextprime(s); end do; q := nextprime(q); end do; p := nextprime(p); end do; return(false); end:


MATHEMATICA

Take[ Union[ Flatten[ Table[ Prime[p]^2*Prime[q] + Prime[r]*Prime[s], {p, 1, 6}, {q, 1, 15}, {r, 1, 15}, {s, 1, 15}]]], 70]


CROSSREFS

Cf. A081053.
Sequence in context: A043651 A043701 A290001 * A135739 A096923 A141642
Adjacent sequences: A080690 A080691 A080692 * A080694 A080695 A080696


KEYWORD

nonn


AUTHOR

Mario Maqueda Garcia [Garci'a] (israelmira(AT)terra.es), Mar 03 2003


EXTENSIONS

Edited and extended by Robert G. Wilson v, Mar 05 2003


STATUS

approved



