login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080421
a(n) = (n+1)*(n+2)*(n+9)*3^n/18.
7
1, 10, 66, 360, 1755, 7938, 34020, 139968, 557685, 2165130, 8227494, 30705480, 112842639, 409209570, 1466777160, 5203870272, 18294856425, 63795240522, 220829678730, 759344158440, 2595329855811, 8821564534530, 29832927334956, 100419390748800, 336561864306525
OFFSET
0,2
FORMULA
G.f.: (1-2*x)/(1-3*x)^4.
a(n) = A006503(n+1)*3^(n-1).
a(n) = 12*a(n-1)-54*a(n-2)+108*a(n-3)-81*a(n-4). - Harvey P. Dale, Mar 21 2012
From G. C. Greubel, Dec 22 2023: (Start)
a(n) = (n+9)*A036068(n-1).
a(n) = A136158(n+3, 3).
E.g.f.: (1/2)*(2 + 14*x + 15*x^2 + 3*x^3)*exp(3*x). (End)
From Amiram Eldar, Jan 11 2024: (Start)
Sum_{n>=0} 1/a(n) = 44172*log(3/2)/7 - 20050659/7840.
Sum_{n>=0} (-1)^n/a(n) = 44496*log(4/3)/7 - 14329629/7840. (End)
MATHEMATICA
Table[((n+1)(n+2)(n+9)3^n)/18, {n, 0, 30}] (* or *) LinearRecurrence[ {12, -54, 108, -81}, {1, 10, 66, 360}, 30] (* Harvey P. Dale, Mar 21 2012 *)
CoefficientList[Series[(1 - 2 x) / (1 - 3 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 05 2013 *)
PROG
(Magma) [(n+1)*(n+2)*(n+9)*3^n/18: n in [0..30]]; // Vincenzo Librandi, Aug 05 2013
(SageMath) [(n+1)*(n+2)*(n+9)*3^(n-2)/2 for n in range(31)] # G. C. Greubel, Dec 22 2023
CROSSREFS
T(n,3) in triangle A080419.
Sequence in context: A269468 A024391 A074362 * A320817 A004310 A026853
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 19 2003
STATUS
approved