login
a(n)=distinct values of lcm of first n consecutive prime differences[see A080374].
2

%I #7 Nov 06 2021 16:44:34

%S 1,2,4,12,24,168,840,2520,27720,471240,942480,12252240,24504480,

%T 465585120,2327925600,72165693600,216497080800,6278415343200,

%U 144403552893600,288807105787200,12418705548849600,509166927502833600,18839176317604843200,131874234223233902400,6989334413831396827200,328498717450075650878400

%N a(n)=distinct values of lcm of first n consecutive prime differences[see A080374].

%t s=1; Do[s1=s; s=LCM[s, Prime[n+1]-Prime[n]]; If[Greater[s, s1], Print[s]], {n, 1, 100000}]

%t Module[{nn=100000,dprs},dprs=Differences[Prime[Range[nn]]];Table[LCM@@ Take[ dprs,n],{n,nn-1}]]//Union (* _Harvey P. Dale_, Nov 06 2021 *)

%Y Cf. A001223, A080374, A080376.

%K nonn

%O 1,2

%A _Labos Elemer_, Feb 27 2003

%E More terms from _Harvey P. Dale_, Nov 06 2021