login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078761 Sum of the digits of all n-digit numbers. 0
45, 855, 12600, 166500, 2070000, 24750000, 288000000, 3285000000, 36900000000, 409500000000, 4500000000000, 49050000000000, 531000000000000, 5715000000000000, 61200000000000000, 652500000000000000, 6930000000000000000, 73350000000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: satisfies a linear recurrence having signature (20, -100). - Harvey P. Dale, Aug 26 2019

LINKS

Table of n, a(n) for n=1..18.

FORMULA

First differences of A034967: a(n) = 45*n*10^(n-1) - 45*(n-1)10^(n-2) = 45*(9*n+1)*10^(n-2) - Alexander Adamchuk, Jan 02 2004

G.f.: 45*x*(1 - x)/(1 - 10*x)^2. [Arkadiusz Wesolowski, Jul 12 2012]

EXAMPLE

The sum of the digits of the two-digit numbers 10, 11, 12, ..., 99 is 855. Therefore a(2) = 855.

MATHEMATICA

f[n_] := Module[{i, s}, s = 0; For[i = 10^(n - 1), i < 10^n, i++, s = s + Apply[Plus, IntegerDigits[i]]]; s]; t = Table[f[n], {n, 1, 6}]

n=Range[15] a=45*(9*n+1)*10^(n-2) (Adamchuk)

Rest[CoefficientList[Series[45x (1-x)/(1-10x)^2, {x, 0, 20}], x]] (* Harvey P. Dale, Aug 26 2019 *)

CROSSREFS

Cf. A034967.

Sequence in context: A293971 A024379 A134290 * A034967 A199352 A195466

Adjacent sequences:  A078758 A078759 A078760 * A078762 A078763 A078764

KEYWORD

base,nonn

AUTHOR

Joseph L. Pe, Jan 08 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 02:22 EST 2020. Contains 331976 sequences. (Running on oeis4.)