OFFSET
1,1
COMMENTS
A more compact version of A078742. a(7), if it exists, > 73, because A078742(7), if it exists, >10^15. - Neil Fernandez, Aug 22 2007
EXAMPLE
The smallest Fibonacci number to be prime is 2, the 3rd Fibonacci number, so a(1)=3. The smallest Fibonacci number >2 that yields a prime when added to 2 is 3, the 4th Fibonacci number, so a(2)=4. The smallest Fibonacci number >3 that yields a prime when added to 2+3 is 8, the 4th Fibonacci number, so a(3)=6.
MAPLE
N:= 16; # to get the first N terms
fib:= combinat[fibonacci]:
a[1]:= 3: s:= fib(3): count:= 1:
for i from 4 while count < N do
if isprime(s+fib(i)) then
count:= count+1;
a[count]:= i;
s:= s + fib(i);
fi
od:
seq(a[i], i=1..N); # Robert Israel, May 20 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Neil Fernandez, Dec 21 2002
EXTENSIONS
a(7) to a(17) from Robert Israel, May 20 2014
STATUS
approved