login
A078651
Number of increasing geometric-progression subsequences of [1,...,n] with integral successive-term ratio and length >= 1.
6
1, 3, 5, 9, 11, 15, 17, 23, 27, 31, 33, 40, 42, 46, 50, 59, 61, 68, 70, 77, 81, 85, 87, 97, 101, 105, 111, 118, 120, 128, 130, 141, 145, 149, 153, 165, 167, 171, 175, 185, 187, 195, 197, 204, 211, 215, 217, 231, 235, 242, 246, 253, 255, 265, 269, 279, 283, 287
OFFSET
1,2
COMMENTS
The number of geometric-progression subsequences of [1,...,n] with integral successive-term ratio r and length k is floor(n/r^(k-1))(n > 0, r > 1, k > 0).
FORMULA
a(n) = n + sum {r > 1, j > 0} floor(n/r^j)
EXAMPLE
a(1): [1]; a(2): [1],[2],[1,2]; a(3): [1],[2],[3],[1,2],[1,3]
CROSSREFS
a(n) = n + A078632(n).
See A366471 for rational ratios.
See A078567 for APs.
Sequence in context: A166104 A164121 A333171 * A268732 A101114 A120696
KEYWORD
nonn,easy
AUTHOR
Robert E. Sawyer (rs.1(AT)mindspring.com), Jan 08, 2003
STATUS
approved