OFFSET
1,1
COMMENTS
Let d(k, m) be the asymptotic density of k-free numbers (numbers not divisible by a k-th power of a prime) that are not divisible by the first m primes. Then, d(k, m) = (1/zeta(k)) * Product_{j=1..m} (1-1/prime(j))/(1-1/prime(j)^k). The asymptotic density of terms whose smallest prime divisor is prime(i) is delta(i) = d(prime(i)+1, i-1) - d(prime(i), i-1) - d(prime(i)+1, i) + d(prime(i), i) and the asymptotic density of this sequence is Sum_{i>=1} delta(i) = 0.16785889468250175464... . - Amiram Eldar, Jun 24 2022
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
126 = 2 * 3^2 * 7 minimum prime is 2, largest exponent is also 2, hence 126 is in the sequence.
MATHEMATICA
spleQ[n_]:=Module[{f=FactorInteger[n]}, f[[1, 1]]==Max[f[[All, 2]]]]; Select[ Range[2, 400], spleQ] (* Harvey P. Dale, Aug 19 2017 *)
PROG
(Python)
from sympy import factorint
def aupto(limit):
alst = []
for k in range(4, limit+1):
f = factorint(k)
if min(f) == max(f[p] for p in f): alst.append(k)
return alst
print(aupto(338)) # Michael S. Branicky, Apr 12 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 06 2003
STATUS
approved