login
A077005
Smallest k such that prime(n) divides k*prime(n-1) + 1, n > 1.
3
1, 3, 4, 3, 7, 13, 10, 6, 5, 16, 31, 31, 22, 12, 9, 10, 31, 56, 18, 37, 66, 21, 15, 85, 76, 52, 27, 55, 85, 118, 33, 23, 70, 15, 76, 131, 136, 42, 29, 30, 91, 172, 97, 148, 100, 88, 93, 57, 115, 175, 40, 121, 226, 43, 44, 45, 136, 231, 211, 142, 88, 22, 78, 157, 238, 71, 281
OFFSET
2,2
COMMENTS
a(n) = inverse of (prime(n)-prime(n-1)) mod prime(n). This is the least k such that prime(n)|k*((prime(n)-prime(n-1))-1). Since prime(n)|k*prime(n), it must divide (k*prime(n-1)+1), so k = a(n). Also, a(n) = prime(n) - (x*prime(n)+1)/prime(n-1) for the least such x. - David James Sycamore, Oct 05 2018
FORMULA
a(n) = prime(n) - A069830(n - 1). - Emmanuel Vantieghem, Aug 12 2018 [Corrected by Georg Fischer, Sep 21 2024]
EXAMPLE
a(4) = 3 as prime(5) = 11 divides 3*7 + 1, where 7 = prime(4).
MATHEMATICA
sk[a_, b_]:=Module[{k=1}, While[!Divisible[k*a+1, b], k++]; k]; sk@@@ Partition[ Prime[Range[70]], 2, 1] (* Harvey P. Dale, Jun 23 2013 *)
PROG
(PARI) a(n) = {my(k = 1, p = prime(n-1), q = prime(n)); while ((k*p+1) % q, k++); k; } \\ Michel Marcus, Aug 14 2018
CROSSREFS
Cf. A069830.
Sequence in context: A333974 A163108 A350771 * A328347 A265723 A134065
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Oct 26 2002
EXTENSIONS
More terms from Ralf Stephan, Oct 31 2002
More terms from Ray Chandler, Oct 24 2003
STATUS
approved