login
Let u(0)=1, u(n) = 5/2 * floor(u(n-1)); then a(n) = (2/5)*u(n).
1

%I #12 Nov 21 2013 12:47:54

%S 1,2,5,12,30,75,187,467,1167,2917,7292,18230,45575,113937,284842,

%T 712105,1780262,4450655,11126637,27816592,69541480,173853700,

%U 434634250,1086585625,2716464062,6791160155,16977900387,42444750967,106111877417

%N Let u(0)=1, u(n) = 5/2 * floor(u(n-1)); then a(n) = (2/5)*u(n).

%C May be equivalently defined by (1) a(n) = floor(u(n-1)) or (2) a(1) = 1, a(n) = floor(5/2 * a(n - 1)). - _Joel B. Lewis_, Jul 18 2008

%F a(n)=ceiling(c*(5/2)^n) with c=0.76461665854988933665808275090184088890217299...

%t NestList[Floor[5/2 #]&,1,30] (* _Harvey P. Dale_, Apr 18 2012 *)

%K nonn

%O 1,2

%A _Benoit Cloitre_, Nov 25 2002