login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076676
Smallest a(n)>a(n-1) such that a(n)^2+a(n-1)^2 is a perfect square, a(1)=11.
1
11, 60, 63, 84, 112, 180, 189, 252, 275, 660, 693, 924, 1232, 1326, 1768, 1974, 2632, 4026, 5368, 6405, 8200, 8319, 11092, 11715, 15620, 16401, 19720, 20706, 20880, 20910, 24752, 24960, 25300, 26565, 29716, 29835, 33048, 35055, 41496, 42997
OFFSET
1,1
COMMENTS
The sequence is infinite.
LINKS
MAPLE
A076600:= proc(n) local q;
q:= max(select(t -> n^2/t - t > 2*n and (t - n^2/t)::even, numtheory:-divisors(n^2)));
if q = -infinity then 0 else (n^2/q - q)/2 fi;
end proc:
A[1]:= 11;
for n from 2 to 100 do
A[n]:= A076600(A[n-1]);
od:
seq(A[i], i=1..100); # Robert Israel, Mar 22 2018
MATHEMATICA
nmax = 100;
A076600[n_] := Module[{q},
q = Max[Select[Divisors[n^2], n^2/# - # > 2n &&
EvenQ[# - n^2/#]&]];
If[q == -Infinity, 0, (n^2/q - q)/2]];
a[1] = 11;
For[n = 2, n <= nmax, n++, a[n] = A076600[a[n - 1]]];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, May 17 2023, after Robert Israel *)
CROSSREFS
Cf. A076600.
Sequence in context: A349120 A077036 A076604 * A044149 A044530 A050483
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 25 2002
STATUS
approved