login
A076425
Numbers n such that zero is never reached by iterating the mapping k -> abs(reverse(lpd(k))-reverse(gpf(k))). lpd(k) is the largest proper divisor and gpf(k) is the largest prime factor of k.
2
2074, 2113, 2179, 2914, 3111, 4112, 4371, 4390, 4456, 4956, 4978, 5185, 5450, 5750, 6474, 6585, 6827, 7248, 7259, 7285, 7467, 8175, 8625, 8647, 9378, 9711, 9739, 10199, 10975, 11407, 11752, 12006, 12232, 12338, 12445, 12826, 13224, 13396
OFFSET
1,1
COMMENTS
n such that A076423(n) = -1.
EXAMPLE
For 4112 the mapping leads to a fixed point (cf. A076426): 4112 -> 5750 -> 5750 -> ...; for 2074 the mapping leads to a cycle: 2074 -> 7285 -> 7467 -> 9711 -> 7285 -> ...
PROG
(PARI) {stop=20; for(n=1, 13600, c=1; b=1; k=n; while(b&&c<stop, v=divisors(k); a=matsize(v)[2]; z=if(a>1, v[a-1], 1); p=0; while(z>0, d=divrem(z, 10); z=d[1]; p=10*p+d[2]); z=if(k==1, 1, vecmax(component(factor(k), 1))); q=0; while(z>0, d=divrem(z, 10); z=d[1]; q=10*q+d[2]); a=abs(p-q); if(a==0, b=0, k=a; c++)); if(a>0, print1(n, ", ")))}
CROSSREFS
Sequence in context: A221052 A062913 A096927 * A249654 A180921 A270537
KEYWORD
base,nonn
AUTHOR
Klaus Brockhaus, Oct 11 2002
STATUS
approved