login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076425
Numbers n such that zero is never reached by iterating the mapping k -> abs(reverse(lpd(k))-reverse(gpf(k))). lpd(k) is the largest proper divisor and gpf(k) is the largest prime factor of k.
2
2074, 2113, 2179, 2914, 3111, 4112, 4371, 4390, 4456, 4956, 4978, 5185, 5450, 5750, 6474, 6585, 6827, 7248, 7259, 7285, 7467, 8175, 8625, 8647, 9378, 9711, 9739, 10199, 10975, 11407, 11752, 12006, 12232, 12338, 12445, 12826, 13224, 13396
OFFSET
1,1
COMMENTS
n such that A076423(n) = -1.
EXAMPLE
For 4112 the mapping leads to a fixed point (cf. A076426): 4112 -> 5750 -> 5750 -> ...; for 2074 the mapping leads to a cycle: 2074 -> 7285 -> 7467 -> 9711 -> 7285 -> ...
PROG
(PARI) {stop=20; for(n=1, 13600, c=1; b=1; k=n; while(b&&c<stop, v=divisors(k); a=matsize(v)[2]; z=if(a>1, v[a-1], 1); p=0; while(z>0, d=divrem(z, 10); z=d[1]; p=10*p+d[2]); z=if(k==1, 1, vecmax(component(factor(k), 1))); q=0; while(z>0, d=divrem(z, 10); z=d[1]; q=10*q+d[2]); a=abs(p-q); if(a==0, b=0, k=a; c++)); if(a>0, print1(n, ", ")))}
CROSSREFS
Sequence in context: A221052 A062913 A096927 * A249654 A180921 A270537
KEYWORD
base,nonn
AUTHOR
Klaus Brockhaus, Oct 11 2002
STATUS
approved