login
A076168
Primes p such that sum of squares of even-position digits equals the sum of squares of odd-position digits of p.
0
11, 1487, 4871, 7841, 15413, 20231, 22453, 23201, 25423, 28657, 29867, 41351, 43597, 44453, 45377, 45553, 47513, 48017, 48479, 49537, 49801, 51473, 53891, 57413, 65287, 67421, 80491, 83591, 86297, 87041, 89797, 102023, 104089, 105389
OFFSET
1,1
COMMENTS
There are 266 such primes < 10^6, the largest being 994871 -> 9^2+4^2+7^2 = 9^2+8^2+1^2 = 146.
EXAMPLE
1487 is in the sequence because 1^2+8^2 = 4^2+7^4 = 65.
CROSSREFS
Sequence in context: A015027 A160264 A351597 * A053884 A027880 A222841
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Nov 01 2002
STATUS
approved