login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074837
Numbers k such that the penultimate 3 divisors of k sum to k.
2
6, 18, 42, 54, 66, 78, 102, 114, 126, 138, 162, 174, 186, 198, 222, 234, 246, 258, 282, 294, 306, 318, 342, 354, 366, 378, 402, 414, 426, 438, 462, 474, 486, 498, 522, 534, 546, 558, 582, 594, 606, 618, 642, 654, 666, 678, 702, 714, 726, 738, 762, 774, 786
OFFSET
1,1
COMMENTS
It seems that only numbers that are 6 mod 12 are present except for multiples of 30.
From David A. Corneth, Jun 18 2021: (Start)
The above is true. Proof: Suppose a(n) = k. Then the penultimate three divisors of k are k/d1, k/d2 and k/d3 for some divisors d1, d2 and d3 where 1 < d1 < d2 < d3 of k. We have k = k/d1 + k/d2 + k/d3 = k * (1/d1 + 1/d2 + 1/d3) i.e. 1 = 1/d1 + 1/d2 + 1/d3. The only triplet satisfying this (including the inequalities) is (d1, d2, d3) = (2, 3, 6).
So k cannot be divisible by 4 and not by 5 but must be divisible by lcm(2, 3, 6) = 6. The only numbers satisfying this are numbers of the form 6 mod 12 that are not multiples of 5. (End)
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
FORMULA
a(n) = a(n-4) + 60. - David A. Corneth, Jun 18 2021
From Chai Wah Wu, Apr 16 2024: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x*(6*x^4 + 12*x^3 + 24*x^2 + 12*x + 6)/(x^5 - x^4 - x + 1). (End)
EXAMPLE
18 has the divisors 1,2,3,6,9,18. The penultimate 3 are 3,6,9, which sum to 18.
MATHEMATICA
Select[Range[1000], Length[Divisors[ # ]]>3 && Sum[Divisors[ # ][[ -i]], {i, 2, 4}]==# &] (* Stefan Steinerberger, Aug 01 2007 *)
p3dQ[n_]:=Module[{d=Divisors[n]}, Length[d]>3&&Total[Take[Most[d], -3]] == n]; Select[Range[800], p3dQ] (* Harvey P. Dale, Dec 06 2012 *)
PROG
(PARI) for (n=1, 800, dn=divisors(n); dnl=length(dn); if (dnl>3, if (n==dn[dnl-1]+dn[dnl-2]+dn[dnl-3], print1(n, ", "))))
(PARI) is(n) = n%12 == 6 && n % 5 != 0 \\ David A. Corneth, Jun 18 2021
(Python)
from sympy import divisors
def ok(n): d = divisors(n); return False if len(d)<4 else n==sum(d[-4:-1])
print(list(filter(ok, range(800)))) # Michael S. Branicky, Jun 18 2021
CROSSREFS
Sequence in context: A163983 A191829 A023620 * A286308 A015942 A009945
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Sep 09 2002
EXTENSIONS
More terms from Stefan Steinerberger, Aug 01 2007
STATUS
approved