login
A073476
n^4 + 1, (n+2)^4 + 1 and (n+4)^4 + 1 are all primes.
1
2, 2222, 2732, 3998, 5356, 5358, 5626, 8034, 9402, 9972, 10006, 10930, 12188, 12322, 12702, 13372, 14536, 15038, 15962, 21396, 24704, 25446, 27118, 29566, 36126, 36604, 36732, 36734, 37550, 37552, 37554, 44176, 44218, 48164, 48978
OFFSET
1,1
LINKS
EXAMPLE
2222^4+1, 2224^4+1 and 2226^4+1 are prime
MAPLE
N:= 10^5: # to get all terms <= N
R:= select(t -> isprime(t^4+1), [seq(i, i=2..N, 2)]):
V:= select(i -> R[i+2]=R[i]+4, [$1..nops(R)-2]):
R[V]; # Robert Israel, Apr 20 2017
MATHEMATICA
Select[Range[5000], PrimeQ[ #^4 + 1] && PrimeQ[(# + 2)^4 + 1] && PrimeQ[(# + 4)^4 + 1] & ]
CROSSREFS
Cf. A000068, n such that n^4+1 is prime.
Sequence in context: A368480 A365179 A028487 * A051103 A005800 A200170
KEYWORD
nonn
AUTHOR
Martin Raab, Aug 26 2002
EXTENSIONS
More terms from Robert G. Wilson v, Aug 28 2002
STATUS
approved