login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073341 Number of steps to reach an integer starting with (2n+1)/4 and iterating the map x -> x*ceiling(x). 5
3, 2, 3, 8, 1, 1, 3, 2, 2, 3, 2, 2, 1, 1, 7, 4, 4, 2, 4, 3, 1, 1, 2, 4, 2, 8, 4, 3, 1, 1, 6, 4, 3, 2, 5, 4, 1, 1, 5, 2, 2, 3, 2, 2, 1, 1, 4, 5, 6, 2, 3, 5, 1, 1, 2, 3, 2, 4, 3, 6, 1, 1, 7, 8, 3, 2, 4, 5, 1, 1, 3, 2, 2, 3, 2, 2, 1, 1, 7, 3, 4, 2, 7, 6, 1, 1, 2, 5, 2, 5, 5, 3, 1, 1, 3, 3, 3, 2, 10, 3, 1, 1, 4, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

We conjecture that an integer is always reached.

Is S(n) = Sum_{k=2..n} a(k) asymptotic to 3*n? S(n) = 3n for n = 69, 127, 166, 169, 189, 197, 327, 328, 360, 389, 404, 405, 419, 428, 497, 519, 520, 540, 541, 544, 547, 652, 668, 669, 676, 682, 683...

The sign of 3n-S(n) seems to change often: 3n-S(n) = 3, 4, 4, -1, 1, 3, 3, 4, 5, 5, 6, 7, 9, 11, 7, 6, 5, 6, 5, 5, 7, 9, 10, 9, 10, 5, 4, 4, 6, 8, 5, 4, 4, 5, 3, 2, 4, 6, 4, 5, 6, 6, 7, 8, 10, 12, 11, 9, 6, 7, 7, 5, 7, 9, 10, 10, 11, 10, 10, 7, 9, 11, 7, 2, 2, 3, 2, 0, 2, 4, 4, 5, 6, 6, 7, 8, 10, 12, 8, 8, 7, 8, 4, 1, 3, 5, 6, 4, 5, 3, 1, 1, 3, 5, 5, 5, 5, 6, -1... Is 3n-S(n) bounded? - Benoit Cloitre, Sep 05 2002

LINKS

Table of n, a(n) for n=2..106.

J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113-128.

MAPLE

g := proc(x) local M, t1, t2, t3; M := 4^100; t1 := ceil(x) mod M; t2 := x*t1; t3 := numer(t2) mod M; t3/denom(t2); end;

a := []; for n from 2 to 150 do t1 := (2*n+1)/4; for i from 1 to 100 do t1 := g(t1); if type(t1, `integer`) then break; fi; od: a := [op(a), i]; od: a;

PROG

(PARI) a(n)=if(n<1, 0, s=n/2+1/4; c=0; while(frac(s)>0, s=s*ceil(s); c++); c) - from Benoit Cloitre Sep 05 2002

CROSSREFS

Cf. A073524, A074735, A085785, A085817, A085833.

Sequence in context: A171721 A225695 A226469 * A227470 A218396 A070982

Adjacent sequences:  A073338 A073339 A073340 * A073342 A073343 A073344

KEYWORD

nonn

AUTHOR

N. J. A. Sloane and J. C. Lagarias, Sep 04 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 1 02:09 EDT 2014. Contains 247498 sequences.