

A073341


Number of steps to reach an integer starting with (2n+1)/4 and iterating the map x > x*ceiling(x).


5



3, 2, 3, 8, 1, 1, 3, 2, 2, 3, 2, 2, 1, 1, 7, 4, 4, 2, 4, 3, 1, 1, 2, 4, 2, 8, 4, 3, 1, 1, 6, 4, 3, 2, 5, 4, 1, 1, 5, 2, 2, 3, 2, 2, 1, 1, 4, 5, 6, 2, 3, 5, 1, 1, 2, 3, 2, 4, 3, 6, 1, 1, 7, 8, 3, 2, 4, 5, 1, 1, 3, 2, 2, 3, 2, 2, 1, 1, 7, 3, 4, 2, 7, 6, 1, 1, 2, 5, 2, 5, 5, 3, 1, 1, 3, 3, 3, 2, 10, 3, 1, 1, 4, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

We conjecture that an integer is always reached.
Is S(n) = Sum_{k=2..n} a(k) asymptotic to 3*n? S(n) = 3n for n = 69, 127, 166, 169, 189, 197, 327, 328, 360, 389, 404, 405, 419, 428, 497, 519, 520, 540, 541, 544, 547, 652, 668, 669, 676, 682, 683...
The sign of 3nS(n) seems to change often: 3nS(n) = 3, 4, 4, 1, 1, 3, 3, 4, 5, 5, 6, 7, 9, 11, 7, 6, 5, 6, 5, 5, 7, 9, 10, 9, 10, 5, 4, 4, 6, 8, 5, 4, 4, 5, 3, 2, 4, 6, 4, 5, 6, 6, 7, 8, 10, 12, 11, 9, 6, 7, 7, 5, 7, 9, 10, 10, 11, 10, 10, 7, 9, 11, 7, 2, 2, 3, 2, 0, 2, 4, 4, 5, 6, 6, 7, 8, 10, 12, 8, 8, 7, 8, 4, 1, 3, 5, 6, 4, 5, 3, 1, 1, 3, 5, 5, 5, 5, 6, 1... Is 3nS(n) bounded?  Benoit Cloitre, Sep 05 2002


LINKS

Table of n, a(n) for n=2..106.
J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113128.


MAPLE

g := proc(x) local M, t1, t2, t3; M := 4^100; t1 := ceil(x) mod M; t2 := x*t1; t3 := numer(t2) mod M; t3/denom(t2); end;
a := []; for n from 2 to 150 do t1 := (2*n+1)/4; for i from 1 to 100 do t1 := g(t1); if type(t1, `integer`) then break; fi; od: a := [op(a), i]; od: a;


PROG

(PARI) a(n)=if(n<1, 0, s=n/2+1/4; c=0; while(frac(s)>0, s=s*ceil(s); c++); c)  from Benoit Cloitre Sep 05 2002


CROSSREFS

Cf. A073524, A074735, A085785, A085817, A085833.
Sequence in context: A171721 A225695 A226469 * A227470 A218396 A070982
Adjacent sequences: A073338 A073339 A073340 * A073342 A073343 A073344


KEYWORD

nonn


AUTHOR

N. J. A. Sloane and J. C. Lagarias, Sep 04 2002


STATUS

approved



