login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073089
a(n) = (1/2)*(4n - 3 - Sum_{k=1..n} A007400(k)).
5
0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1
OFFSET
1,1
COMMENTS
From Joerg Arndt, Oct 28 2013: (Start)
Sequence is (essentially) obtained by complementing every other term of A014577.
Turns (by 90 degrees) of a curve similar to the Heighway dragon which can be rendered as follows: [Init] Set n=0 and direction=0. [Draw] Draw a unit line (in the current direction). Turn left/right if a(n) is zero/nonzero respectively. [Next] Set n=n+1 and goto (draw).
See the linked pdf files for two renderings of the curve. (End)
FORMULA
Recurrence: a(1) = a(4n+2) = a(8n+7) = a(16n+13) = 0, a(4n) = a(8n+3) = a(16n+5) = 1, a(8n+1) = a(4n+1).
G.f.: The following series has a simple continued fraction expansion:
x + Sum_{n>=1} 1/x^(2^n-1) = [x; x, -x, -x, -x, x, ..., (-1)^a(n)*x, ...]. - Paul D. Hanna, Oct 19 2012
a(n) = A014577(n-2) + A056594(n). Conjecture: a(n) = (1 + (-1)^A057661(n - 1))/2 for all n > 1. - Velin Yanev, Feb 01 2021
EXAMPLE
From Paul D. Hanna, Oct 19 2012: (Start)
Let F(x) = x + 1/x + 1/x^3 + 1/x^7 + 1/x^15 + 1/x^31 +...+ 1/x^(2^n-1) +...
then F(x) = x + 1/(x + 1/(-x + 1/(-x + 1/(-x + 1/(x + 1/(x + 1/(-x + 1/(-x + 1/(x + 1/(-x + 1/(-x + 1/(x + 1/(x + 1/(x + 1/(-x + 1/(-x + 1/(x + 1/(-x + 1/(-x + 1/(-x + 1/(x +...+ 1/((-1)^a(n)*x +...)))))))))))))))))))))),
a continued fraction in which the partial quotients equal (-1)^a(n)*x. (End)
PROG
(PARI) a(n)=if(n<2, 0, if(n%8==1, a((n+1)/2), [1, -1, 0, 1, 1, 1, 0, 0, 1, -1, 0, 1, 1, 0, 0, 0][(n%16)+1])) \\ Ralf Stephan
(PARI) /* Using the Continued Fraction, Print 2^N terms of this sequence: */
{N=10; CF=contfrac(x+sum(n=1, N, 1/x^(2^n-1)), 2^N); for(n=1, 2^N, print1((1-CF[n]/x)/2, ", "))} \\ Paul D. Hanna, Oct 19 2012
(PARI) a(n) = { if ( n<=1, return(0)); n-=1; my(v=2^valuation(n, 2) ); return( (0==bitand(n, v<<1)) != (v%2) ); } \\ Joerg Arndt, Oct 28 2013
CROSSREFS
Cf. A007400, A073088 (the sum part here), A123725.
Sequence in context: A271591 A287790 A285159 * A373470 A373141 A323158
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Aug 18 2002
STATUS
approved