login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072702 Last digit of F(n) is 4 where F(n) is the n-th Fibonacci number. 3
9, 12, 18, 51, 69, 72, 78, 111, 129, 132, 138, 171, 189, 192, 198, 231, 249, 252, 258, 291, 309, 312, 318, 351, 369, 372, 378, 411, 429, 432, 438, 471, 489, 492, 498, 531, 549, 552, 558, 591, 609, 612, 618, 651, 669, 672, 678, 711, 729, 732, 738, 771, 789 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sequence contains numbers of form (9+60k), (12+60k), (18+60k), (51+60k), with k>=0.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).

FORMULA

G.f.: x*(9*x^4+33*x^3+6*x^2+3*x+9) / (x^5-x^4-x+1). - Colin Barker, Jun 16 2013

a(n) = (-60 + 6*(-1)^n + (9+21*i)*(-i)^n + (9-i*21)*i^n + 60*n) / 4 where i=sqrt(-1). - Colin Barker, Oct 16 2015

MATHEMATICA

With[{fibs=Fibonacci[Range[800]]}, Flatten[Position[fibs, _?(Last[ IntegerDigits[ #]]==4&)]]] (* Harvey P. Dale, Sep 24 2012 *)

PROG

(PARI) a(n) = (-60 + 6*(-1)^n + (9+21*I)*(-I)^n + (9-I*21)*I^n + 60*n) / 4 \\ Colin Barker, Oct 16 2015

(PARI) Vec(x*(9*x^4+33*x^3+6*x^2+3*x+9)/(x^5-x^4-x+1) + O(x^100)) \\ Colin Barker, Oct 16 2015

(PARI) for(n=0, 1e3, if(fibonacci(n) % 10 == 4, print1(n", "))) \\ Altug Alkan, Oct 16 2015

CROSSREFS

Cf. A000045, A003893.

Sequence in context: A162822 A087269 A153973 * A157973 A057577 A014766

Adjacent sequences:  A072699 A072700 A072701 * A072703 A072704 A072705

KEYWORD

nonn,base,easy

AUTHOR

Benoit Cloitre, Aug 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 11:25 EDT 2017. Contains 288788 sequences.