login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072543
Numbers whose largest decimal digit is also the initial digit.
4
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 21, 22, 30, 31, 32, 33, 40, 41, 42, 43, 44, 50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 110, 111, 200, 201
OFFSET
1,3
COMMENTS
A054055(a(n)) = A000030(a(n));
the sequence differs from A009996, A032873 and A032907: a(66)=101 is not in A009996, a(67)=110 is not in A032873 and a(65)=100 is not in A032907.
LINKS
EXAMPLE
a(10^ 1) = 9
a(10^ 2) = 411
a(10^ 3) = 6216
a(10^ 4) = 73474
a(10^ 5) = 813826
a(10^ 6) = 8512170
a(10^ 7) = 88368780
a(10^ 8) = 911960211
a(10^ 9) = 9237655227
a(10^10) = 93323313303
MAPLE
for i from 1 to 10 do A[i]:= i-1 od:
count:= 10:
for i from 1 to 9 do P[i]:= [seq([j], j=0..i)]; od:
for d from 2 to 4 do
for x from 1 to 9 do
for p in P[x] do
count:= count+1;
A[count]:= add(p[k]*10^(k-1), k=1..d-1) + x*10^(d-1);
od:
P[x]:= [seq(seq([op(v), t], v=P[x]), t=0..x)];
od
od:
seq(A[i], i=1..count); # Robert Israel, Feb 01 2015
MATHEMATICA
Select[Range[0, 250], Max[IntegerDigits[#]]==First[IntegerDigits[#]]&] (* Harvey P. Dale, Apr 28 2016 *)
PROG
(Haskell)
a072543 n = a072543_list !! (n-1)
a072543_list = [x | x <- [0..], a054055 x == a000030 x]
-- Reinhard Zumkeller, Apr 25 2012
(PARI) is(n)=n=digits(n); !#n || n[1]==vecmax(n) \\ Charles R Greathouse IV, Jan 02 2014
(PARI) a(n)={d = 0; r = 1; s = 0; i = 0; if(n == 1, 0, n-=2; while(n > sum(i=0, 9, (i+1)^d), n-=sum(i=0, 9, (i+1)^d); n++; d++); while(n >= (r+1)^d, n -= (r+1)^d; r++); s = r * 10^d; while(n, s += 10^i*(n%(r+1)); n \= (r+1); i++)); s } \\ David A. Corneth, Jan 31 2015
CROSSREFS
Cf. A072544.
Sequence in context: A247754 A084383 A032873 * A009996 A032907 A130576
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Aug 04 2002
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Apr 25 2012
STATUS
approved