login
Concatenate continued fraction expansions of the rational numbers 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, 1/5, 2/5, ...
2

%I #18 Oct 31 2015 15:54:04

%S 2,3,1,2,4,2,1,3,5,2,2,1,1,2,1,4,6,3,2,1,2,1,5,7,3,2,2,3,1,1,3,1,2,2,

%T 1,6,8,4,2,1,2,2,1,1,1,2,1,3,1,7,9,4,2,3,2,4,1,1,4,1,2,1,3,2,1,8,10,5,

%U 3,3,2,2,2,1,1,2,1,2,3,1,4,1,9,11,5,2,3,1,2,2,1,3,2,5,1,1,5,1,1,1,3,1,2

%N Concatenate continued fraction expansions of the rational numbers 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, 1/5, 2/5, ...

%C Leading zeros in continued fraction omitted.

%D K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Math. Assoc. America, 2002, p. 72.

%H Robert Israel, <a href="/A072193/b072193.txt">Table of n, a(n) for n = 0..10299</a>

%e Table starts

%e 2

%e 3

%e 1 2

%e 4

%e 2

%e 1 3

%e 5

%e 2 2

%e 1 1 2. - _Robert Israel_, Sep 18 2015

%p seq(seq(op(cfrac(i/j,'quotients')[2..-1]),i=1..j-1),j=2..20); # _Robert Israel_, Sep 18 2015

%t Table[Rest@ ContinuedFraction[k/n], {n, 2, 11}, {k, n - 1}] // Flatten (* _Michael De Vlieger_, Sep 18 2015 *)

%o (PARI) {m=11; for(i=2,m, for(j=1,i-1,c=contfrac(j/i); for(k=2,matsize(c)[2],print1(c[k],","))))}

%K nonn,easy,tabf

%O 0,1

%A _N. J. A. Sloane_, Nov 10 2002

%E Extended by _Klaus Brockhaus_ and _Vladeta Jovovic_, Nov 13 2002