login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071774
Related to Pisano periods: integers k such that the period of Fibonacci numbers mod k equals 2*(k+1).
10
3, 7, 13, 17, 23, 37, 43, 53, 67, 73, 83, 97, 103, 127, 137, 157, 163, 167, 173, 193, 197, 223, 227, 257, 277, 283, 293, 313, 317, 337, 367, 373, 383, 397, 433, 443, 457, 463, 467, 487, 503, 523, 547, 577, 587, 593, 607, 613, 617, 643, 647, 653, 673, 683, 727
OFFSET
1,1
COMMENTS
Terms are primes with final digit 3 or 7.
Apparently these are the primes given in A003631 without 2 and A216067. - Klaus Purath, Dec 11 2020
If k is a term, then for m=5*k the period of Fibonacci numbers mod m equals 2*(m+5). - Matthew Goers, Jan 13 2021
LINKS
Bob Bastasz, Lyndon words of a second-order recurrence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 25-29.
MATHEMATICA
Select[Prime@ Range[129], Function[n, Mod[Last@ NestWhile[{Mod[#2, n], Mod[#1 + #2, n], #3 + 1} & @@ # &, {1, 1, 1}, #[[1 ;; 2]] != {0, 1} &], n] == Mod[2 (n + 1), n] ]] (* Michael De Vlieger, Mar 31 2021, after Leo C. Stein at A001175 *)
PROG
(PARI) for(n=2, 5000, t=2*(n+1); good=1; if(fibonacci(t)%n==0, for(s=0, t, if(fibonacci(t+s)%n!=fibonacci(s)%n, good=0; break); if(s>1&&s<t-1&&fibonacci(s)%n==0, cur=s; good2=1; for(ss=0, s, if(fibonacci(ss+s)%n!=fibonacci(ss)%n, good2=0; break)); if(good2, good=0; break); ); ); if(good, print1(n, ", ")))) \\ Lambert Klasen (Lambert.Klasen(AT)gmx.net), Dec 21 2004
(PARI) forprime(p=3, 3000, if(p%5==2||p%5==3, a=1; b=0; c=1; while(a!=0||b!=1, c++; d=a; a=b; a=(a+d)%p; b=d%p); if(c==(2*(p+1)), print1(p", ")))) /* V. Raman, Nov 22 2012 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 04 2002
EXTENSIONS
More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Dec 21 2004
STATUS
approved