OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..4784
Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (x)).
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
Smallest k such that n = Max_{ i=1..k: Card[ contfrac(k/i) ] }.
a(1) = 1; for n>1 a(n) = F(n+2) where F(n)=A000045(n) are the Fibonacci numbers.
G.f.: (1+x)^2/(1-x-x^2); a(n) = 3*F(n+1) - F(n-1) - 0^n. - Paul Barry, Jul 26 2004
a(n) = Fibonacci(n+2) for n > 1. - Charles R Greathouse IV, Jan 17 2012
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 1}, {3, 5}, 50]] (* Vincenzo Librandi, Jul 12 2015 *)
PROG
(PARI) a(n)=if(n>1, fibonacci(n+2), 1) \\ Charles R Greathouse IV, Jan 17 2012
(Magma) [1] cat [Fibonacci(n+2): n in [2..50]]; // Vincenzo Librandi, Jul 12 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 22 2002
STATUS
approved