login
A071679
Least k such that the maximum number of elements among the continued fractions for k/1, k/2, k/3, k/4, ..., k/k equals n.
8
1, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155
OFFSET
1,2
LINKS
Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (x)).
FORMULA
Smallest k such that n = Max_{ i=1..k: Card[ contfrac(k/i) ] }.
a(1) = 1; for n>1 a(n) = F(n+2) where F(n)=A000045(n) are the Fibonacci numbers.
G.f.: (1+x)^2/(1-x-x^2); a(n) = 3*F(n+1) - F(n-1) - 0^n. - Paul Barry, Jul 26 2004
a(n) = Fibonacci(n+2) for n > 1. - Charles R Greathouse IV, Jan 17 2012
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 1}, {3, 5}, 50]] (* Vincenzo Librandi, Jul 12 2015 *)
PROG
(PARI) a(n)=if(n>1, fibonacci(n+2), 1) \\ Charles R Greathouse IV, Jan 17 2012
(Magma) [1] cat [Fibonacci(n+2): n in [2..50]]; // Vincenzo Librandi, Jul 12 2015
CROSSREFS
Sequence in context: A079122 A265069 A265070 * A020701 A024885 A180459
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 22 2002
STATUS
approved