login
A071406
a(n) is the smallest multiplier of n! such that -1+a(n)*n! and 1+a(n)*n! are both primes.
3
4, 2, 1, 3, 2, 17, 7, 6, 3, 14, 29, 30, 48, 27, 9, 24, 12, 97, 78, 47, 71, 80, 55, 13, 57, 20, 81, 259, 108, 163, 81, 118, 63, 215, 173, 513, 420, 561, 537, 1162, 158, 33, 122, 286, 459, 391, 305, 288, 114, 307, 15, 680, 355, 365, 338, 70, 23
OFFSET
1,1
LINKS
EXAMPLE
n=7: a(7)=7, 7!=5040, 7.7!=35280 and {35279,35281} are primes.
MATHEMATICA
Table[fl=1; Do[s=(j!)*k; If[PrimeQ[s-1]&&PrimeQ[s+1]&&Equal[fl, 1], Print[{j, k}]; fl=0], {k, 1, 2*j^2}], {j, 0, 100}]
smnf[n_]:=Module[{k=1, f=n!}, While[!PrimeQ[k*f+1]||!PrimeQ[k*f-1], k++]; k]; Array[smnf, 60] (* Harvey P. Dale, May 24 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 24 2002
STATUS
approved