OFFSET
2,1
COMMENTS
LINKS
T. M. Cover, The number of linearly inducible orderings of points in d-space, SIAM J. Applied Math., 15 (1967), 434-439.
FORMULA
T(n, 1) = 2 for n >= 2, T(2, k) = 2 for k >= 1, T(n+1, k) = T(n, k) + n*T(n, k-1). Also T(n, k) = n! for k >= n-1.
EXAMPLE
Triangle begins:
2
2 6
2 12 24
2 20 72 120
2 30 172 480 720
...
This triangle is the lower triangular part of a square array which begins
2 2 2 2 2 ...
2 6 6 6 6 ...
2 12 24 24 24 ...
2 20 72 120 120 ...
2 30 172 480 720 ...
...
MAPLE
T:=proc(n, k) if k>=n then 0 elif k=1 and n>=2 then 2 elif n=2 and k>=1 then 2 elif k=n-1 then n! else T(n-1, k)+(n-1)*T(n-1, k-1) fi end:seq(seq(T(n, k), k=1..n-1), n=2..12);
MATHEMATICA
T[n_ /; n >= 2, 1] = 2; T[2, k_ /; k >= 1] = 2;
T[n_, k_] := T[n, k] = T[n-1, k] + (n-1)*T[n-1, k-1];
T[n_, k_] /; k >= n-1 = n!;
Flatten[Table[T[n, k], {n, 2, 11}, {k, 1, n-1}]] (* Jean-François Alcover, Apr 27 2011 *)
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Oct 26 2003
EXTENSIONS
More terms from Emeric Deutsch, May 24 2004
STATUS
approved