login
A071063
Determinant of n X n matrix defined by m(i,j) = 0 if i+j is a prime, m(i,j) = 1 otherwise.
0
0, 0, -1, 0, 1, 0, -9, -8, 0, 0, 0, 0, 0, 0, 0, -8, 9, 14, -71, -310, 281, 2000, -8004, -9200, 8836, 720, -409, -2710, 67766, 110501, -1117396, -4130160, 381136, 91920, -111376, -36080, 144420, 555581, -311814, -1831958, 1876689, -1648, -3584425, 4768308, 1971637204, 53664688220
OFFSET
1,7
COMMENTS
Let h(i,j) be the matrix defined in A069191, then a(n)=((-1)^n)*Det(h(i,j)-J), where J is the n X n matrix with only 1's as its elements.
MATHEMATICA
a[n_] := Det[Table[If[PrimeQ[i + j], 0, 1], {i, 1, n}, {j, 1, n}]] Table[a[n], {n, 1, 50}]
CROSSREFS
Cf. A069191.
Sequence in context: A038297 A144622 A069242 * A343055 A021509 A154898
KEYWORD
sign
AUTHOR
Santi Spadaro, May 26 2002
STATUS
approved